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MODELING A VERY RARE EVENT TO ESTIMATE SEA
TURTLE BYCATCH: LESSONS LEARNED

MARTI L. MCCRACKEN

ABSTRACT

Estimation of sea turtle bycatch in the Hawaii-based pelagic longline fishery is
discussed in the context of modeling a very rare event using heirarchical catch data
collected by longline vessel captains and NMFS observers. Problems in bycatch model
formulation, identification of efficient predictor variables, model selection, and model
diagnostics are explored in detail. Models to predict bycatch of leatherback, olive
ridley, and loggerhead sea turtles are developed using a variety of statistical tools
including classification trees, generalized linear models, and generalized additive
models. Prediction intervals for bycatch are derived using a nonparametric bootstrap
algorithm. The statistical methods are applied to estimate annual bycatch and
corresponding prediction intervals for all three turtle species in the years 1994-1999.
Problems encountered in all aspects of the research and their resolution are discussed at
length. Unresolved statistical issues are identified and suggestions for improving turtle
bycatch estimation methods are offered.

Key Words: AIC; BIC; Bootstrap simulation; Bycatch; Classification trees;
Generalized additive models; Generalized linear models; Hierarchical data; Longline
fishery; Prediction intervals.

INTRODUCTION

Methodology for modeling the occurance of a rare event is well established, but
when the event is extremely rare and the data are hierarchical, many of the commonly
used modeling techniques are unsatisfactory. In the literature, there are comments
concerning modeling a very rare event but there is no comprehensive paper on modeling
a very rare event when the data are hierarchical. This problem was encountered when
using a model-based approach to estimate total sea turtle bycatch in the Hawaii-based
pelagic longline fishery. Bycatch is counted and recorded for each fishing operation
within a fishing trip so the data are hierarchical; furthermore, turtle bycatch is a very
rare event with 96% to 99% of the counts being zero. Herein, the dilemmas encountered
when modeling hierarchical data of an extremely rare event and strategies to overcome
these predicaments are discussed. Topics discussed include possible model types,
creating more efficient predictor variables, model selection, and model diagnostics. To
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approximate prediction intervals for turtle bycatch a bootstrap algorithm is developed.
Prediction models for turtle bycatch are selected, fitted, and used to estimate the total
annual turtle bycatch for the years from 1994 to 1999.

The reason for modeling turtle bycatch is to derive required annual estimates of
the total bycatch for all trips landing in Hawaii from 1994 to 1999 by registered
Hawaii-based longline fishing vessels. Loggerhead, leatherback, olive ridley, and green
turtles are occasionally hooked or entangled on the longline gear accidently during a
fishery operation (set). Because these four species of turtles are listed as endangered a
Biological Opinion authorizing the fishery is required under Section 7 of the
Endangered Species Act. The Biological Opinion includes an incidental take statement
based on the anticipated take for the fishery. Annual estimates of bycatch are compared
to these numbers to determine if the fishery has exceeded the anticipated take. If so a
formal review is undertaken to determine if the fishery is threatening the survival of the
species of concern. Herein, a turtle bycatch (take) is defined as a turtle that is hooked
or entangled on the longline upon retrieval. To obtain records of turtle bycatch for a
sample of trips, an observer program was established in 1994. This program places
trained observers on selected trips of the longline fishery. During these trips, observers
record turtle bycatch and other pertinent information for each fishing operation.

This document is an updated and expanded version of a previous report
(McCracken, 2000) concerning these estimates. It describes subsequent work
undertaken to further understand the complexities of modeling hierarchical data of an
extremely rare event. The bycatch of green turtles is not discussed in this document
because there were too few observed takes to pursue a model with explanatory variables
(McCracken, 2000).

Estimating a characteristic of the whole population using observations from part
of the population is a familiar problem. One common approach is to draw a probability
sample and use an estimator based on the sampling probabilities to estimate the
characteristic. In practice, it is often difficult to design an affordable, fair, and practical
probability sampling survey of a fishing fleet’s activities. Some of the typical obstacles
are that (1) a list of trips and their departure dates typically does not exist beforehand,
(2) the composition and activity level of a fleet can change over time, and (3) the
availability of observers is limited and can fluctuate.

Alternatively, an estimator based on an assumed prediction model can be used.
An appropriate model to assume is one that accurately represents the process
generating the characteristic of interest; i.e., it is model-unbiased or the bias is small
enough to be inconsequential. If an appropriate model does not exist beforehand, as in
our case, the idea is to use available empirical data to find a good approximating model
for bycatch. This model-based approach does not require a probability sample,
although some manner of randomization in the selection of a sample is typically
advantageous (Hansen, Madow, and Tepping, 1983).
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Because of limited funding, only about 5% of the annual trips by Hawaii-based
longliners were sampled from 1994 to 1999. During this period different sampling
schemes were used, but a probability sample was not obtained. Therefore, to estimate
total bycatch I used a prediction model that predicted a set’s bycatch of the species of
concern. During model development, decisions were made concerning suitable model
types, selecting and fitting models, and how to estimate uncertainty in the predicted
bycatch. When making these decisions it was important to consider the data structure
and properties of the response variable (the quantity to be modeled). Three
characteristics of the bycatch data to be considered were that (1) the response variable,
turtle bycatch, was a rare event, (2) the data were hierarchical, and (3) many of the
potential predictor variables were related. Because of these complexities, model
building was not straightforward and modeling techniques commonly used were
unsatisfactory. In the next section, the data structure is described in more detail. The
model types that I considered are presented in Section 3. For the selected model types,
model fitting is reviewed in Section 4. Creating prediction variables, model selection,
and estimation of prediction intervals are discussed in Sections 5, 6, and 7, respectively.
In all these sections, I emphasize the effect that modeling hierarchical data of a very
rare event had on the process and the dilemmas that were faced. In Section 8, the
predictions of bycatch and a brief discussion concerning the interpretation of the
prediction models are presented. I conclude this paper with a discussion of how the
estimates of turtle bycatch might be improved in the future.

THE RESPONSE VARIABLE AND DATA STRUCTURE

To select an appropriate model type the properties of the response variable, turtle
bycatch, and the data structure must be considered. The data used to develop
prediction models for bycatch were created by matching the records of observed
longline sets to corresponding daily logbook records kept and reported by longline
vessel captains for any fishing operation. Possible predictor variables from the loghook
records and the recorded bycatch from the observer records were then extracted. Turtle
bycatch was a rare event: out of 3,107 sets from 266 observed trips from 1994 to 1999,
only 32 olive ridley, 33 leatherback, and 142 loggerhead bycatches were recorded. Since
turtle bycatch represents counts of a rare event, a natural distribution to consider is the
Poisson distribution. The zero-inflated Poisson (ZIP) distribution should also be
considered. A ZIP variate arises when the stochastic process generates a Poisson variate
or a value of zero. If no turtles are exposed to the longline, then by default the bycatch
is zero, and the variable bycatch may exhibit more zeros than expected for a Poisson
variate.

Concerning the data structure, information on turtle bycatch was collected by
placing observers on selected vessels for the duration of a trip. During observed trips,
the bycatch for each longline set was recorded. Thus, the independent primary unit of
observation was the trip, and the sets within a trip were subunits. Data with this
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structure are commonly referred to as hierarchical. Since sets within a trip are typically
close together in time and space and similar in fishing style, we expect bycatches within
a trip to be more closely related than bycatches across trips. Therefore, when creating
a model I considered the possibility of stochastic dependence among sets from the same
trip. For simplicity, I could have avoided this dependence and modeled bycatch at the
trip level, but information concerning the predictor variables would have been lost. For
example, latitude and longitude were recorded for each set, and these values would have
needed to be summarized for the trip. Hence, modeling at the set level is likely to be
more informative, but results can be misleading if the hierarchical structure of the data
is ignored and independent observations assumed.

In addition to the data structure, we need to be concerned with how much
information is present in the data. Turtle bycatch is a rare event; in fact, it appears to
be a very rare event. For all three species, the data contained a very high percentage of
sets with zero takes: 98.8% for leatherbacks, 99.1% for olive ridleys, and 96.2% for
loggerheads. Because of the rarity of the event, we need to consider how much
information is available to model bycatch since this determines how complex a model
can be reliably fitted. As the effective sample size increases, the number of model
parameters we can estimate accurately increases. If the specified model has more
parameters than can be estimated reliably from the data, we say the model is
overparameterized. If we want to gather information concerning a rare event, a large
sample size is needed to increase the likelihood of observing an event. A sample of 100
may be sufficient for a common event, but a rare event may not occur even once in 100
observations. An equivalent-sized sample of a common and a rare event does not
provide an equal amount of information. Given the rarity of bycatch and the scope of
the area and time involved, our sample of 266 trips (3,107 sets) is not large. Therefore,
we need to be meticulous not to specify an overparameterized model and careful when
assuming asymptotic distributions. For example, if relying on the Student’s ¢
distribution, the asymptotic distribution of maximum likelihood estimates, the degrees
of freedom (typically the number of independent observations minus the number of
parameters being estimated) needs to be modified to improve the correspondence
between the distribution of the test statistic and the asymptotic distribution
(McCullagh and Nelder, 1989). With hierarchical data, the formulas used to adjust the
degrees of freedom for independent data (see McCullagh and Nelder, 1989) are
inappropriate; therefore, we do not have a good estimate of the effective degrees of
freedom.

POSSIBLE SUITABLE MODEL TYPES

When modeling independent Poisson counts, the generalized linear model (GLM)
known as the log-linear model is commonly used. This model assumes that an observed
count y; is generated from a Poisson distribution with mean w; and that all counts are
independently generated. In practice, counts often exhibit more variation than
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expected for a Poisson variate. The relationship between the mean and variance for a
Poisson variate is a fixed relationship; specifically, the variance equals the mean.
Therefore, a Poisson distribution may seem suitable for a response, but when we
inspect the data the variance will not appear to equal the mean. If the variance is
larger, we say that the data exhibit overdispersion. When modeling the subunits in a
hierarchical data set, we expect overdispersion since the subunits are clumped within
primary units. Failure to account for overdispersion can lead to serious underestimation
of standard errors and misleading inferences about the form of the linear predictor.

The negative binomial model, the ZIP model, and the generalized linear mixed
model (GLMM) are three model types that can be used to model overdispersed Poisson
counts. The ZIP model is appropriate when overdispersion is caused by more zeros
than expected. The GLMM model is appropriate when the data are hierarchical. The
negative binomial distribution is appropriate if counts are generated from a Poisson
distribution having a random mean with a gamma distribution.

Another approach to model overdispersed data is not to specify the distribution
exactly but to only specify a model for the mean of the data and the relationship
between the mean and the variance. This is the prerequisite for quasi-likelihood
estimation. For an overdispersed Poisson variate, Y, with expected value pu, a log-link
and Var(Y) = ¢u are frequently assumed. The parameter ¢ is typically called the
dispersion parameter. Advantages of quasi-likelihood estimation are that point
estimates of the model’s coefficients do not depend on the value of ¢, and they have
properties similar to those of MLEs. Under quite general conditions, they are consistent
and asymptotically normal and retain relatively high efficiency as long as the degree of
overdispersion is moderate (McCullagh and Nelder, 1989). The disadvantage is that for
the estimation of ¢, quasi-likelihood does not behave like a log-likelihood. For Poisson
data, a conventional estimator for ¢ is X?/(n — p) where X? = >""  ((y; — pi)?/ ;) is
the generalized Pearson statistic, n is the number of independent observations, and p is
the number of parameters estimated. This estimator is the moment estimator and is
consistent, but is known to perform poorly if a sizeable proportion of the observed
counts are small (McCullagh and Nelder, 1989), as in our data. In fact, when modeling
turtle bycatch the estimates of the dispersion parameter based on the Pearson statistic
appeared to underestimate dispersion. This was confirmed by generating Poisson
variates, ¢ = 1, assuming a particular model, and then refitting the assumed model and
estimating ¢. The estimated dispersion parameter was consistently smaller than one.
Another estimator of dispersion is the residual deviance divided by the degrees of
freedom, but for the turtle bycatch data this estimator behaved like the moment
estimator. In conclusion, quasi-likelihood may provide suitable estimates of the
parameters in the predictor but the commonly used estimates of dispersion are
unreliable. If these estimators of dispersion are used for determining uncertainty or in
model selection, the results might be highly misleading.
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All the models mentioned above assume that the predictor is additive and linear.
The linearity restriction will not always provide a good approximation model, and a
model with no assumptions concerning the shape of the additive function can be
advantageous. This is the motivation behind the development of GAMs. GAMs still
assume additivity in the predictors, but they allow the additive smooth function to take
on any shape ranging from a straight line to nonparametric curves of increasing
complexity. An advantage of working in the GAM environment is that linear,
polynomial, smooth, and step functions of the predictors can all be fitted and then
compared, albeit crudely. Beyond the common generalized models, GAMs have recently
been developed for the negative binomial model (Thurston, Wand, and Wiencke, 2000)
and the generalized mixed model (Fahrmeir and Lang, 2001).

Negative binomial, generalized mixed, or ZIP models that fit nonparametric
curves, or are linear if appropriate, sound appealing, but they require more information
from the data and more complex algorithms to fit the model. Significantly, it is possible
to generate data as rare as that observed with turtle bycatch by just using a Poisson
generator. In fact, a log-linear model and its GAM and quasi-likelihood counterparts
converged quickly and provided good fits to the bycatch data when a small number of
parameters were specified. A quick attempt was made to fit a GLMM and a negative
binomial linear model. For both of these models, there were problems with parameter
estimates diverging; when they did converge, the fit was often poor. I did not spend
further time trying different estimators or algorithms for fitting these two models, a ZIP
model, or their GAM counterparts as it was becoming apparent that the rarity of turtle
bycatch, and not overdispersion, was the overwhelming factor that had to be handled
and a more complex model was likely not appropriate. In summary, a log-linear model
and its GAM and quasi-likelihood counterparts seemed to be the most suitable
approach for modeling turtle bycatch.

FITTING A GLM AND GAM

Because of the rarity of turtle bycatch, an estimator’s large-sample properties are
likely not applicable and should not be automatically assumed. To estimate the
unknown parameters in a GLM, we typically use maximum likelihood estimators
(MLEs). Given an appropriate model and independent samples, MLEs generally have
the optimal large-sample properties of being consistent and asymptotically efficient.
Loosely speaking, for a large independent sample, MLEs are as good an estimator as
there is. For a small independent sample, however, MLEs are often biased, and
methods commonly used for interval estimation and model selection are frequently
inappropriate since they assume asymptotic distributions (i.e., n — 00).

When fitting a GAM one needs to decide on (1) the methodology used to fit the
smoother, (2) the type of smoother, and (3) the degree of smoothing. There are several
ways to fit a GAM but none has been shown to be optimum. The most widely used
method for fitting a GAM is probably an iterative algorithm that uses backfitting in
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combination with local scoring (Schimek and Turlach, 2000). Although this algorithm
is popular, it has limitations that are relevant to the structure of our data. This
algorithm, and most others, assume independent errors and can be adversely affected if
the errors are dependent. It can also have severe problems with increasing collinearity
or concurvity (concurvity refers to nonlinear dependence) among predictor variables.
Additionally, the bias and variance of the smoothers cannot be derived theoretically
except in special cases. Thus, to estimate variances and confidence intervals, resampling
techniques are commonly used (Schimek and Turlach, 2000). There are newer
algorithms that may be more robust to these problems, but they are not readily
available and their behavior is not yet well understood. For a review of these
algorithms see Schimek and Turlach (2000).

There are several different types of smoothers, but the type of smoother used is
generally less critical than the methodology used to fit the smoother (Schimek and
Turlach, 2000). The most widely used smoother is probably the scatterplot smoother
known as the cubic smoothing spline, fitted by satisfying a penalized log-likelihood
criterion using the backfitting algorithm in combination with local scoring. The
intention of the penalized log-likelihood criterion is to optimize the fit while penalizing
roughness to some prespecified extent. This is the smoother and algorithm I used to fit
the GAMs considered in this paper.

When fitting a GAM the degree of smoothing for each dimension (predictor) must
be specified. Instead of assuming a parametric form, a smoother uses the data to
determine the shape of the functional relationship. The shape is determined by the
degree that the data are smoothed, and this is calibrated by a quantity known as the
equivalent degrees of freedom. As the degrees of freedom is increased, the smoothing
function gains flexibility and becomes ‘rougher,” enabling the display of more hills and
valleys and more complex shapes. When there is more than one predictor, finding a
global minimum is difficult for data-driven methods and selection of the degree of
smoothing remains a troubling issue (Schimek and Turlach, 2000). For further details
and references concerning GAMs, Hastie and Tibshirani (1990) and Schimek and
Turlach (2000) are good sources.

CREATING PREDICTOR VARIABLES

To create possible predictor variables I started with the variables recorded in the
logbooks, listed in Table 1. I then used classification trees (Chambers and Hastie, 1993)
to suggest possible beneficial transformations of these variables. Classification trees
express the relationship between the response variable and the predictor variables as a
step function. This step function is created by partitioning the sample space into
distinct regions defined by the predictors. Within a region the predicted bycatch is
constant. The predictor variables and how they split the sample space are selected to
provide the best fit. Trees have the advantage of not assuming additivity and
expressing some interactions more efficiently, including nonadditive interactions.
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Classification trees assume that the response variable is a multinomial variate.
The variable turtle bycatch is not a multinomial variate. But suppose we defined a new
variable to equal zero if there were no bycatches in the longline set and one if there was
at least one bycatch in the set. Then our new response variable would resemble a
binomial variate, a special case of the multinomial distribution. Because the vast
majority of observed bycatches would be zero or one, little information would be lost.
However, we would no longer be modeling the magnitude of bycatch but the presence or
absence of bycatch. For this reason, I did not use trees to predict bycatch but rather to
suggest new categorical predictor variables, defined by the distinct regions created by a
tree.

Particularly, I was interested in defining new categorical variables that (1) pooled
levels of an existing categorical variable, (2) split a continuous variable into categories,
or (3) captured an interaction. Since the levels of categorical variables are expected to
indicate constant levels of bycatch, trees are a natural way to explore pooling levels of a
categorical variable. Using trees in this manner is particularly helpful when we are
restricted to a low-dimensional model and including a categorical variable with several
levels results in overparameterization. A continuous variable should only be split into
categories if doing so provides a better approximating model. If the relationship
between bycatch and a continuous variable is a continuous smooth function,
categorization can introduce unwanted bias and be less efficient. Trees can capture a
nonadditive interaction or express an interaction more efficiently (require fewer
parameters). For example, if turtles are very rare in an area their rarity may be the
overwhelming factor affecting bycatch, versus fishing practices, and adding another
predictor variable will account for little if any unexplained variability. In another area,
where turtles are more common, bycatch is likely to be higher and more variable and
adding further predictors may explain some of this variability. Trees provide a
framework to easily look for these patterns and express them. If a tree captures an
interaction, we can create a new variable that captures this interaction. This new
variable can then be used in a GLM or a GAM.

I used the tree function in S-PLUS (Insightful Corp., 2001) to grow and prune
trees. When growing a tree for a rare event, the minimal observations required in each
categorical region should be sufficiently large to prevent regions from having estimated
probabilities of zero without sufficient samples to support this result. For more

information about tree-based models see Chambers and Hastie (1993) or Hastie,
Tibshirani, and Friedman (2001).

Although trees may be very useful in defining new categorical variables, when
comparing the performance of these new variables to other predictors the significance
levels for the categorical variables will likely be inflated and favored in a stepwise
selection routine. This is because we have used the data being modeled to suggest and
create these categorical predictors.
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The variable day was treated differently than the other variables because it is
circular. To model day I used a piecewise polynomial known as a periodic B-spline.
Piecewise polynomials are parametric linear functions but are more flexible than
ordinary polynomials. A piecewise polynomial is obtained by dividing the values of the
predictor into contiguous intervals and fitting a separate polynomial in each of these
intervals. The endpoints of these intervals are known as knots. Additional restrictions
can be placed on the piecewise polynomials so they are connected at the knots,
resulting in a continuous curve throughout the range of the predictor. With further
restrictions, the curve can be forced to be a smooth periodic function, meaning the
function is continuous as it wraps around a circular variable. A B-spline of order M
refers to a continuous piecewise polynomial with continuous derivatives up to order
M — 2. T used cubic splines as they are considered the lowest-order spline where the
knot discontinuities are typically not visible and there is seldom any good reason to go
beyond them (Hastie, Tibshirani, and Friedman, 2001)

MODEL SELECTION

Concurrently with selecting the model type, the structural aspects of the model
must be determined. This involves selecting the predictor variables and the form of the
additive function for each predictor. The true relationship between bycatch and the
predictor variables is likely complex and probably includes effects of different
magnitudes. Some of these effects are probably not even measured in our data, but
proxies may exist. For example, the number of turtles exposed to a longline set is a
likely factor in turtle bycatch, but this variable is unknown. However, the variables
latitude, longitude, and day in the year are likely proxies for the unknown spatial and
temporal distribution of turtle density. Therefore, we do not expect to unearth the true
relationships but aim to select the best approximating model among a finite set of
candidate models.

Our ability to detect associations of smaller magnitudes and fit more complex
models increases as the sample size increases. With over 3,000 independent
observations, fitting a complex high-dimensional model would generally not be a
problem. However, our 3,107 longline sets are not independent, and the sample size is
relatively small considering the rarity of the event and the scope of the area and time
involved. With so few positive bycatches there is little information to fit a complex
model, but a simple model may be sufficient since takes are so rare.

When several predictor variables expressed in different ways are being considered
as in the turtle bycatch analysis, a stepwise procedure is a convenient way to start the
selection process. Before progressing with a stepwise procedure, the criterion for model
selection needs to be decided. Considerable debate exists about how model selection
should be carried out, but many of the most common approaches are based on the
likelihood function. For GLMs, model selection based on functions of the likelihood is
supported by asymptotic distribution theory, but for GAMs this generally is not true
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and we rely on approximations and heuristics (Chambers and Hastie, 1993). For
example, for a GLM the deviance statistic has an asymptotic y?-distribution but for a
GAM it does not. Hastie and Tibshirani (1990) provide some empirical evidence that
supports using the y2-distribution when evaluating the deviance of a GAM, and in
practice, the deviance and other functions of the likelihood remain useful tools for
evaluating and selecting models when large sample properties are applicable. Two
widely used likelihood-based criteria are Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC). Bayesian, cross-validation, and bootstrap
methods have been the focus of recent research, but these methods generally are more
computer intensive and not feasible if the set of candidate models is not small.

To develop a subset of plausible models for turtle bycatch, I used stepwise
selection. The final model was selected based on model diagnostics and scientific
judgment. In this section, I first describe the stepwise procedure used and the theory
behind it. I then describe how potential predictors were introduced into the stepwise
procedure and how models were evaluated.

Stepwise Selection

Stepwise methods are easy to use and inexpensive computationally, but they must
be used and interpreted with caution. There are several pitfalls. First, the final model
may not optimize a reasonable criterion for choosing a model. Second, the apparent
ordering of the selected predictors is an artifact of the method and need not reflect the
degree of their association with the dependent variable. Finally, the significance of
predictors may be seriously overstated.

When using a stepwise procedure to select a model, one needs to choose a
computational algorithm that provides a systematic technique for visiting and
comparing candidate models. I used the S-PLUS stepwise GAM procedure step.gam
(Insightful Corp., 2001). This algorithm is based on a modified form of AIC, denoted as
GAMAIC herein, and allows one to step through different models along a prespecified
path (Chambers and Hastie, 1993). The visited model with the smallest value of
GAMAIC is the selected model.

The modified form of AIC = —QZ(B | ) + 2p that step.gam uses is
GAMAIC = —QZ(B, S$|x)+ 2p¢, where [(+) is the natural logarithm of the likelihood
function, 3 is the vector of maximum likelihood estimates for 3, § is the fitted
smoother, x is the set of predictors, and p is the sum of the degree of freedom of the
smoother and the number of linear parameters fitted. The addition of ¢ in the second
term is based on the principles of quasi-likelihood.

As detailed in Burnham and Anderson (1998), Akaike used the relationship
between the maximized log-likelihood and the Kullback-Leibler distance to derive an
approximately unbiased estimate of the expected Kullback-Leibler distance (or
information). If the true model has infinite parameters, the minimum-AIC criterion is
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asymptotically efficient in the sense that the prediction error is asymptotically
minimized (Shibata, 1981). Although the smoothers of GAMs are not maximum
likelihood estimates, based on the principles of GAMs and quasi-likelihood estimation
we would expect GAMAIC to behave similarly.

Although AIC has been widely used, it can have serious shortcomings. Foremost,
if the sample size is small or the candidate model has too many parameters in relation
to the size of the sample, AIC is a strongly negatively biased estimator of the expected
Kullback-Leibler distance (Hurvich and Tsai, 1989, 1995), and this bias can lead to
overfitting. Therefore, unless the sample size is large a bias adjustment is strongly
recommended. The exact or best small-sample bias correction term varies by model
(Findley, 1985). Since our sample size is relatively small, a small-sample bias correction
term is likely needed. Small-sample bias correction terms have been proposed for
generalized and quasi-likelihood models (Hurvich and Tsai, 1995, Hurvich et. al., 1998),
but these corrections require knowledge of the sample size n. This brings us back to the
predicament concerning the value of n. In our case, is it the number of trips sampled or
the number of observed longline sets? Since sets within a trip are not independent, the
amount of information in the data is likely between these two numbers. Even if
observations were independent, turtle bycatch is a very rare event, and the effective
sample size is likely smaller than the actual sample size.

AIC has frequently been compared to BIC = —2I(3 | ) + log(n)p (Schwarz,
1978). As when using AIC, the model with the smallest value of BIC is the selected
model. Theoretically, selecting the model with minimum BIC yields the model that is
most probable under the posterior distribution (the conditional density of 5 given x).
Assuming that the true model is included in a finite set of candidate models, BIC is
consistent, meaning BIC will asymptotically select the correct model. In practice, BIC
tends to underfit, especially as n increases. If we use BIC, we still face the dilemma
concerning the value of n.

AIC and BIC assume independent observations. Pan and Le (2001) observed that
for binary clustered data AIC and BIC work well if the independence assumption is
satisfied, or nearly so, but perform poorly when this assumption is seriously violated.
For dependent observations, they proposed a bootstrap method for model selection. As
a way to select a model for predicting bycatch, this method was not computationally
feasible due to the large number of candidate models being considered. Fortunately, the
dependence among sets within a trip appeared to be slight to moderate.

A controversial interpretation of AIC is that the first term is a measure of the
model’s lack of fit and the second term 2p is a penalty for increasing the size of the
model. Expanding on this idea, the General Information Criterion is defined as
GIC = =2I(6 | ) + ap (Atkinson 1980, 1981), where « is either constant or a function
of n. GIC includes AIC (a = 2) and BIC (a = log(n)). Additionally, since most of the
small-sample bias correction modifications to AIC can be expressed as AIC plus a term
that is a function of n and p, these modified forms of AIC are also included. Using
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similar modifications to GAMAIC, we can express GIC as

GAMGIC = —QZ(B, Slx)+ ape. For linear regression models with independent
observations, Atkinson (1981) suggests using a range of reasonable values for a to
provide a set of plausible initial models for further analysis. If n is unknown, using a
range of values for « is supported by the fact that altering n in the bias correction term
is equivalent, in practical terms, to changing the value of the penalty. Because of the
dilemma concerning the value of n and QAS, I incorporated this idea into GAMGIC, where
GAMGIC was computed as if observations were independent. Because these ideas are
exploratory, I only used GAMGIC and step.gam to create a set of plausible models.

Within step.gam you cannot directly adjust «, but the value of gb can be specified
using the scale command. If scale is interpreted as scale = gba then both gb and « are
specified and « can be adjusted by means of this command. After a few trials, it was
clear that values of scale > 8 tended to underfit models; hence, I used values of scale
ranging from 2 (AIC) to 8 (BIC assuming independent Poisson variates). Observation
indicated that AIC tended to overfit and BIC tended to underfit the models. This
observation was supported by simulations where independent and dependent correlated
Poisson variates were generated using models similar to those being considered. The
generated values were then subjected to similar model selection procedures. The
simulation suggested that AIC could grossly overfit the model, particularly when the
stepwise procedure could visit overparameterized models. Proceeding with caution
under this framework, stepwise selection using step.gam was a useful tool.

As potential predictors, I considered modeling continuous variables using linear
terms, categorizations, smoothers with different degrees of freedom, and polynomials.
For categorical variables, I considered their original form and any pooling suggested by
a classification tree. I also considered potential interactions between predictors. To
understand the relationships between predictor variables, I considered them
individually, in groups of related variables, and in subsets that showed possibilities for
prediction. Because the outcome is likely to be influenced by the starting model and
the order in which term formulas are specified, both of these factors were investigated.

Model Diagnostics

Once a model was fitted, informal verification of the goodness of fit was obtained
through residual plots. Figure 1 is an example of a diagnostic residual plot supplied by
S-PLUS and used extensively in this analysis. The solid line on the figure is the smooth
curve fitted to the loggerhead bycatch data for the variable latitude; only latitudes
greater than 22°N were included in the data modeled. If observations are independent
and pairwise correlations among the predictor are not high, the dashed lines lie
approximately two standard errors away from the central curve on either side (Chamber
and Hastie, 1993). Because the bycatch data are hierarchical and the correlation among
predictors may be high, the standard error bands are likely too narrow, but they still
give a rough indication of how uncertainty may be spread throughout the curve. In



13

Figure 1, the standard error band follows the general pattern of the fitted curve but
flares out near the endpoints of the observed latitudinal range. The fact that we cannot
draw a horizontal line across the plot without going way outside the band provides
evidence that bycatch was associated with latitude.

Parts of the plot where the standard error band is particularly wide suggest that
the fit is unstable; that is, there is a high level of uncertainty in the fit. Unstable fits
can be caused by sparse data or by a choice of degrees of freedom of the smoother that
is too low to give an adequate representation of the relationship. Sparse data can be
detected using the rug plot along the bottom of Figure 1. The rug plot gives the
frequency of the corresponding predictor by placing a short vertical line at each
observed value. In Figure 1, the rug plot indicates there were few observations at the
higher latitudes; hence, the standard error band there is very wide. The band probably
widens at the lower range of latitudes because the reliability of a GAM fit is always
reduced at the endpoints of the range (Hastie and Tibshirani, 1990).

The black circles on Figure 1 are the partial deviance residuals (Chambers and
Hastie, 1993). The deviance residual for observation y; is the square root of its
contribution to the overall deviance multiplied by 1 if y; is greater than its fitted value
and —1 if y; is less than its fitted value. A satisfactory diagnostic plot typically has
residuals distributed evenly and randomly above and below the fitted curve. Because of
the very high frequency of zeros in our data, a satisfactory diagnostic plot will look
different. First, we expect fi; to be positive but consistently near zero. Since an
observed count of one or greater is large when compared to a fitted value of zero,
observed zeros will have small negative residuals and observed positive bycatches will
have large positive residuals. Therefore, we do not expect residuals to be symmetrically
distributed around the fitted curve. Instead, a good fit is indicated by the positive
residuals loosely following the pattern of the fitted curve and the negative residuals
falling farther below the curve as the frequency of positive residuals increases.

PREDICTION

After selecting and fitting the predictive model, the next step was to use the
model to predict the bycatch of each unobserved longline set. For each set 7, the
predicted bycatch was Y/Z = f1; = exp(n;), where 7); was the number obtained when using
set 1’s recorded logbook predictor values in the fitted model. Total bycatch was
predicted by adding the observed bycatch to the sum of the predicted bycatch for all
unobserved sets.

At this juncture we have only a point estimate of total bycatch. Because this
estimate is subject to sampling error and random fluctuations, it should be
accompanied by a measure of uncertainty. This measure is frequently expressed in the
form of a prediction interval. A prediction interval is different from what is typically
called a confidence interval: an interval that expresses the uncertainty in the parameter
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estimates, such as fi, because of sampling fluctuations. When a stochastic model is used
to predict total bycatch, we assume that a set’s bycatch is a random variable. This
assumption implies that total bycatch is also a random variable that fluctuates
randomly around its mean. Hence, a predictor has two sources of variation: the
variation in fi and the variation of Y.

Although quasi-likelihood was used to fit the models, to estimate uncertainty I
did not assume any large sample properties or use the quasi-likelihood estimate of the
dispersion parameter. Instead, I used a nonparametric bootstrapping algorithm based
on algorithms in Davison and Hinkley (1997) to approximate the prediction intervals
for predicted total bycatch. To account for overdispersion, I did not assume an error
structure but mimicked the error structure of the original data by resampling residuals.
Specifically, I resampled the standardized Pearson residuals (Davison and Hinkley,
1997). The standardized Pearson residuals were calculated as

=1,...,n), (1)
where fi; was the fitted value for longline set 7.
The basic steps of the algorithm were as follows. For » = 1,..., R bootstrap

replications: (1) a new response y; was generated for each set using the equation

where € was randomly sampled from the set of standardized Pearson residuals; (2) the
model was refitted using the y;'s; (3) total bycatch Y, was predicted for

yr = 1994, - -+ 1999 using the refitted model; (4) for each year, standardized prediction
errors were calculated as

Yy — Y

\V oYy

where Y, and Yy’; were the bootstrap-generated total bycatch and the predicted total
bycatch, respectively, for the current bootstrap replication. Finally, the R values of dj,
were ordered so that er,(l) <. < dzr,( R)- The 95% prediction interval was
approximated as

dy,. = (3)

(Yyr + & ((Re1ye05)\ Yor® Yor + dy (ri1)e05)\ Yor® )- (4)

The probability that the prediction intervals for 1994 to 1999 all enclose the true
bycatch is not 0.95, as this requires simultaneous prediction intervals. I used R = 999
as it is recommended that R > 999 when using bootstrapping to approximate
confidence or prediction intervals (Davison and Hinkley, 1997).

Notice that an estimate of ¢ is used in four places. In Equation 2, the selected
standardized Pearson’s residual is multiplied by the same value it was divided by in
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Equation 1; therefore, the value of ¢ is negated. Similarly, Equation 4 nullifies the
standardization of the prediction errors in Equation 3. Because the value of QAS is used to
standardize a random variable and then negated within the bootstrap process, a poor
estimate of QAS could cause difficulty when trying to mimic the error structure. In
practice, I found it best to use the estimate of ¢ based on the Pearson statistic if this
estimate was greater than one; otherwise, I used ¢ = 1. Since a value less than one was
probably due to sparseness, not underdispersion, QAS = 1 is likely a better estimate.

To mimic the error structure successfully, the sampling protocol used to resample
the residuals in the first step is very important. Drawing a simple random sample of
residuals with replacement was not appropriate in this situation for two reasons: (1) the
residuals were not homogenous, and (2) this protocol assumes that sets were
independent. Trips, not sets, were the independent observational unit, and the
correlation between sets within a trip needed to be captured. To model this correlation
I used an adaptation of block resampling with trip as the sampling block. Block
resampling has proved useful when bootstrapping time-series data (Davison and
Hinkley, 1997). The idea of block resampling is to capture the autocorrelation structure
by sampling, with replacement, blocks of consecutive observations. These blocks are
then pasted together to form a new series. Although this algorithm may mimic the
correlation, it will not capture the heteroscedasticity present in the residuals.

The heteroscedasticity present in the residual plot in Figure 2 was typical for the
models used to predict turtle bycatch. Notice that the residuals for the smaller fitted
values have more extreme values than those for the larger fitted values. This is because
a recorded count of one divided by a fitted value near zero produces a large residual.
Therefore, if only small residuals are applied to small fitted values, the occasional
positive bycatch in the midst of zeros would not be recreated. Similarly, if a large
residual is assigned to a large fitted value, an extremely large and unrealistic value of
bycatch would be generated. To prevent creating unrepresentative residuals and to
produce the general pattern of heteroscedasticity present in the residual plots, I
stratified the residuals based on their corresponding fitted values.

Finally, to mimic the correlation and heteroscedasticity in the residuals I merged
the idea of block resampling and stratification of residuals. Within each stratum, trips
were sampled with equal probability and replacement until the required number of €s
was generated. The generated residuals from selected trips were then pasted from end
to end to form a new bootstrap series.

Three further details concerning the sampling protocol need mentioning: (1) To
prevent splitting sets from the same trip into different strata, I used the minimal
amount of stratification necessary to reproduce the heteroscedasticity. Using this
strategy, most sets from a trip tended to fall in the same stratum, but some trips were
split. I considered assigning sets within a trip to the same stratum based on a summary
statistic, such as the mean or median, of a trip’s fitted values. However, since the
heteroscedasticity of residuals was a bigger problem than the correlation between
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residuals, splitting trips appeared preferable. (2) The inherent bias in GAMs and most
nonparametric regression methods distorts the residuals and fitted values, thus naive
substitution of fi; and €] from the fitted model into Equations 1 and 2 is apt to provide
inaccurate prediction intervals. To avoid bias, Davison and Hinkley (1977)
recommended taking residuals from an undersmoothed curve and fitted values from an
oversmoothed curve. This is the strategy I used. In practice, I found that the
oversmoothing should be slight (the degrees of freedom of the smoother should be
reduced only slightly), and the average deviance of the undersmoothed and
oversmoothed curves should be approximately equal to the deviance of the fitted model.
(3) One drawback of this algorithm was that y; could take on negative and non-integer
values. To fix this, a constant was added to y; and the new value was rounded to the
nearest non-negative integer. The constant was selected so that the average total
bycatch of the bootstrap-generated data sets was comparable to the observed total
bycatch.

After the first step was completed, each longline set had a generated y;. In the
second step, y; was used in place of the recorded observed bycatch and the prediction
model refitted, meaning that the unknown parameters were reestimated for each
bootstrap sample. If a variable created by a classification tree was included in the
prediction model, for each bootstrap replication, a tree was fitted and pruned to the
same size as the selected model and the classification of the variable redefined before
the model was refitted. This procedure was consistent with the idea of refitting a
smoother but not redetermining the degree of smoothing.

Finally, I checked the suitability of the algorithm by confirming that the
distributions of the residual deviance and QAS for the bootstrap replications were centered
near their values for the original prediction model. Furthermore, for a few bootstrap
replications, I generated residual plots similar to Figure 2 and checked for the same
general pattern as in the original plot.

An advantage of using the statistic d* is that bias is implicitly adjusted for in the
bootstrap distribution (Davision and Hinkley, 1997); therefore, it is usually not
necessary to incorporate an empirical bias adjustment into the numerator of d* when
approximating prediction intervals. However, if the point estimates are going to be
given, a bias adjustment should be considered. I estimated bias as the mean of YT* -Y.
forr=1,..., R, where YT* and Y, were the predicted and actual total bycatch for
bootstrap replication r.

RESULTS

For leatherback and olive ridley turtles there were few observed bycatches, and
only a simple model could be fitted. However, the bycatch on individual longline sets
appeared to be consistently small over time and space, suggesting that there were few
factors with large effects. For loggerhead turtles there were more observed bycatches,
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and a more complex model could be fitted. In this section, for each turtle species I
compare different prediction models and present their predicted bycatch.

For predicting leatherback bycatch, the variable latitude appeared to be a good
predictor, but the best way to express the relationship between bycatch and latitude
was less clear. Although I thought a smoother with six degrees of freedom provided the
best approximating model throughout the latitudinal range, the fit in the middle (Fig.
3), specifically between 15°N and 25°N, appears as if it was oversmoothed. Between
these two latitudes, there were numerous observed sets throughout the year but only
one positive bycatch observed. The fitted curve between these two latitudes steadily
declined, reaching a local minimum near 20°N, near the one positive bycatch, and then
steadily inclined. The data seem to suggest that the curve should be discontinuous or
fall more dramatically, then be relatively flat, and then rise more dramatically. One
possible explanation for this pattern may be the effect of fishing practices on the
bycatch. Most of the fishing between these latitudes was tuna fishing, but this was also
true south of 15°N. Although leatherbacks are thought to occur throughout the fishing
grounds of the Hawaii-based longline fleet, their density and how it fluctuates
seasonally are unknown. However, the North Equatorial Current flows through the
southern part of the fishing grounds, and we would expect a higher biomass of food in
this area. Therefore, turtle density might be higher in this area, resulting in a higher
rate of bycatch. If the type of fishing affected the bycatch rate and the different types
of fishing were confined to distinct latitudinal regions, a realistic curve may be
discontinuous or characterized by very steep slopes and relatively flat areas. A curve
with these characteristics contradicts the shape of a cubic spline and is difficult to fit
using a cubic spline smoother. As an alternative to a smooth curve, I split latitude into
four categories as suggested by a classification tree and then fitted a GLM. Table 2
provides the intervals of latitude defining the four categories. Although expressing
latitude as a categorical variable probably resulted in some model bias, it is not clear
the bias was greater than that produced by using a GAM. Table 3 gives the point
estimates and the 95% prediction intervals for the GAM and GLM. The point estimates
and lengths of the prediction intervals are very similar. The increased magnitude and
wider prediction intervals for leatherback bycatches in 1998 and 1999 can be explained
numerically by the increased percentage of trips near the northern boundary of
observed latitudes. Both models probably introduced some model bias, but due to the
rarity of leatherback bycatch this bias was probably small, especially when compared to
the uncertainty in the predictions.

To predict olive ridley bycatch, fitting a GLM using a categorization suggested by
a classification tree proved useful. The categorization had four levels defined by the
variables sea surface temperature, number of hooks, and latitude. Table 2 provides the
definition for each category. This categorization appears to capture an interaction using
few parameters. Olive ridley turtles are believed to be rarer in colder water, and the
majority of observed bycatches were in warmer water. The definition of the first
category therefore seems logical. The next three categories were defined by the number
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of hooks and latitude. The relationship between olive ridley bycatch and number of
hooks was interesting. If the number of hooks increased, the predicted number of
bycatches decreased. At first this seems counterintuitive, but the observer data include
longline trips with different objectives; some were targeting tuna, others swordfish, and
others mixed species. The targeted fish usually determines the fishing practice, and
fishing practice is a suspected factor in the bycatch rate. The variable trip type was
supposed to capture the species being targeted, thus the style of fishing, but it is
suspected that the mixed category was sometimes incorrectly checked in the loghooks.
If the variable trip type was strongly associated with bycatch but was recorded
inaccurately, this association may not be captured in the data. Typically, more hooks
are used when targeting tuna than swordfish; therefore, number of hooks may have
been a proxy for fishing practice. If number of hooks was recorded with greater
accuracy than trip type, it may appear to have a stronger association with bycatch,
regardless of whether this was true. The point estimates and 95% P. 1. for olive ridley
bycatch are given in Table 4.

Although still a rare event, loggerhead bycatches were more common than for the
other two species. Figure 1 shows that there were no positive loggerhead bycatches in
the southern part of the fishing grounds; 24.4°N was the southernmost location of a
positive bycatch. This is not surprising, as loggerhead turtles are thought to occur only
in the northern region of the fishing ground. If loggerheads do not occur in the southern
region, then the probability of a loggerhead bycatch there is zero, and these structural
zeros should be excluded when modeling bycatch. Including them can result in an
unstable model and produce unrealistic positive bycatch probabilities, since i > 0 in a
log-linear model. I truncated the data at 22°N as this was where the fitted curve tended
to ‘flatten out’ to a very small probability. To predict total bycatch, I considered two
models, each with three predictors. Both models included the variables day and
latitude, but the third predictor was sea surface temperature in one model and number
of hooks in the other model. Latitude entered both models as a smooth cubic spline
with 3 d.f., and day entered both models as a B-spline with one knot (5 d.f.). Modeling
day as a circular variable captured the seasonal variation in bycatch; hence, day was
likely a proxy for the seasonal density of loggerhead turtles in the fishing grounds or for
the seasonality of the different fishing practices. Sea surface temperature entered the
first model as a smooth cubic spline with 4 d.f., and the number of hooks entered the
second model as a categorical variable with two levels. Since swordfishing sets typically
take place where sea surface temperatures are colder and also involves fewer hooks, the
variables sea surface temperature and number of hooks were related. If one variable was
entered into the model the other appeared to provide little additional information. The
model with number of hooks as a predictor appeared to fit the data slightly better
according to GAMGIC. Similar to the olive ridley model, the category with more hooks
had a smaller predicted loggerhead bycatch. Sea surface temperature was not recorded
in the logbooks but estimated by interpolating data collected by satellite-borne
temperature sensors. Although sea surface temperature may have had a stronger
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relationship with bycatch, number of hooks may be a better predictor because it had
less measurement error. The estimates of bycatch for both models are given in Table 5.

The estimated bias of predicted total bycatch for loggerheads was slightly higher
than for the other two species (Tables 3, 4, and 5). As mentioned previously, smoothers
typically have increasing bias at the boundaries. As the number of predictors increases
in a GAM, the number of boundaries also increases and therefore we expect the bias to
increase. The GAM used to model leatherback bycatch had one predictor, but the
GAM in the first model for loggerhead bycatch had three predictors; therefore, we
would expect it to have higher bias. Finally, compared to the other years, in 1994 there
were more longline sets in northern latitudes where loggerhead bycatches were
predicted to be higher.

CONCLUSIONS

Although simple models appeared sufficient to predict leatherback, olive ridley,
and loggerhead bycatch, several different avenues can be taken to improve the
predictions of bycatch. Foremost, the prediction intervals reported in Tables 3, 4, and 5
do not account for the uncertainty in model selection. As model selection was part of
the prediction process, prediction intervals that also account for this uncertainty would
be more realistic. We now have a better understanding of the process generating turtle
bycatch and should reconsider the set of candidate models before modeling any future
data. With a smaller set of candidate models, it is easier to quantify the uncertainty in
model selection. Additionally, any advancement in the methodology for fitting and
selecting a model for hierarchical data of a very rare event would be advantageous.
Finally, a probability sample would provide the option of using a design-based
estimator.

Currently, Hawaii-based longliners can only participate in swordfishing if a trained
NMES observer is onboard. With complete observer coverage of the swordfish fishery
there is no longer a need to estimate turtle bycatch for this sector. For the rest of the
fleet, observer coverage of the Hawaii-based longline fishery is now around 20%, and a
quasi-probability sample protocol is being followed. The bycatch of turtles in this sector
of the fleet has diminished to the point where modeling bycatch is no longer reasonable
and the Horvitz-Thompson estimator is being used to estimate total bycatch.
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TABLE 1. Explanatory variables considered for predicting total take

Variable Notes

latitude degrees north

longitude degrees east

year 1994-1999

month January-December

day from 1 to 365 and represented as a circular variable
using a periodic B-spline

hooks number of hooks on longline

sea surface temperature calculated by interpolating satellite records for

vessel length

the recorded latitude, longitude, and date (by week)
registered length

trip type 3 categories (swordfish, tuna, mixed)
TABLE 2. Models for predicting bycatch
Species Model class and predictor variables (hooks=number of hooks,
lat=latitude, sst=sea surface temperature)
Leatherback GLM with a categorical variable defined by

[lat < 14.95°N], [14.95°N < lat < 24.84°N],
[24.84°N < lat < 33.82°N], [lat > 33.82°N]

GAM with s(lat,6)

Olive Ridley

GLM with a categorical variable defined by

[sst < 24.22°C,

[sst > 24.22°C'" and hooks < 1073.5 and lat < 19.71°N]|,
[sst > 24.22°C and hooks < 1073.5 and lat > 19.71°N],
[sst > 24.22°C and hooks > 1073.5]

Loggerhead

GAM 1 with s(lat,3), day as a circular variable, and
s(sst,4)

GAM 2 with s(lat,3), day as a circular variable, and
hooks in two categories: [hooks < 1225|, [hooks > 1225]
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TABLE 3. Leatherback bycatch estimates (Est.) with approximate 95%
prediction intervals (PI). The estimated average percent bias was 2% for
the GAM and —1% for the GLM. The models are defined in Table 2.

GLM GAM
Year Est. 95%PI  Est. 95%PI
1994 100 [79-143] 106 [74-130]
1995 99 [71-133] 101 [69-131]
1996 106 [75-147] 105 [79-139)
1997 89 [65-121] 97 [70-127]
1998 139 [87-193] 120 [87-173]
1999 132 [89-183] 125 [86-162]

TABLE 4. Olive ridley bycatch estimates (Est.) with approximate 95%
prediction intervals (PI). The estimated average percent bias was 1%. The
models are defined in Table 2.

Year  Est. 95%PI

1094 137 [82-22§]
1995 119 [77-183)]
1996 147 [97-207]
1997 127 [89-177
1998 118 [82-164]
1999 105 [67-140]

TABLE 5. Loggerhead bycatch estimates (Est.) with approximate 95%
prediction intervals (PI). The estimated average percent bias was —4% for
the GAM 1 and —3% for the GAM 2. The models are defined in Table 2.

1999 418 |281-556 346 |258-477

GAM 1 GAM 2

Year  Est. 95%PI  Est. 95%PI
1994 491 [231-765] 445 [314—621]
1995 387 [180-540] 401 [280-519]
1996 412 [267—544] 401 [312—546]
1997 320 [227-424] 344 [243-450]
1998 409 [292-595] 396 [311-52§]

[ ] [ ]
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Figure 1. The fit of loggerhead bycatch to the scaled latitude (lat), for latitudes greater
than or equal to 22°N. The solid line represents the fitted smooth curve with 3 degrees
of freedom, the dashed lines denote the fitted smooth plus or minus 2 standard errors
(approximate) and demarcate a “standard error band,” the black circles represent
partial deviance residuals, and the bars on the x-axis are the rug plot. The residuals are
well distributed above and below the curve and follow the basic line of the curve. The
standard error band shows a definitive curve and is narrow in the center of the curve
but wider at the right endpoints where there are few observations.
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Figure 2. The residual plot of the fitted values versus the Pearson residuals for the
loggerhead bycatch prediction model that used latitude, day, and hooks as predictor
variables (see Table 2).
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Figure 3. The fit of leatherback bycatch to latitude (lat). The solid line represents the
fitted smooth curve with 6 degrees of freedom, the black circles represent partial
deviance residuals, and the bars on the x-axis are the rug plot. The fit seems reasonable
at the boundaries but appears to be oversmoothed in the middle.
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